65029 - [CSP-S2019] 树的重心 centroid
小简单正在学习离散数学,今天的内容是图论基础,在课上他做了如下两条笔记:
- 一个大小为 n 的树由 n 个结点与 n − 1 条无向边构成,且满足任意两个结点间有且仅有一条简单路径。在树中删去一个结点及与它关联的边,树将分裂为若干个子树;而在树中删去一条边(保留关联结点,下同),树将分裂为恰好两个子树。
- 对于一个大小为 n 的树与任意一个树中结点 c,称 c 是该树的重心当且仅当在树中删去 c 及与它关联的边后,分裂出的所有子树的大小均不超过 \lfloor \frac{n}{2} \rfloor(其中 \lfloor x \rfloor 是下取整函数)。对于包含至少一个结点的树,它的重心只可能有 1 或 2 个。
课后老师给出了一个大小为 n 的树 S,树中结点从 1 \sim n 编号。小简单的课后作业是求出 S 单独删去每条边后,分裂出的两个子树的重心编号和之和。即:
\sum_{(u,v) \in E} \left( \sum_{1 \leq x \leq n \atop 且 x 号点是 S'_u 的重心} x + \sum_{1 \leq y \leq n \atop 且 y 号点是 S'_v 的重心} y \right)
上式中,E 表示树 S 的边集,(u,v) 表示一条连接 u 号点和 v 号点的边。S'_u 与 S'_v 分别表示树 S 删去边 (u,v) 后,u 号点与 v 号点所在的被分裂出的子树。
小简单觉得作业并不简单,只好向你求助,请你教教他。
输入
本题包含多组测试数据
第一行一个整数 T 表示数据组数。
接下来依次给出每组输入数据,对于每组数据:
第一行一个整数 n 表示树 S 的大小。
接下来 n − 1 行,每行两个以空格分隔的整数 u_i,v_i,表示树中的一条边 (u_i,v_i)。
输出
共 T 行,每行一个整数,第 i 行的整数表示:第 i 组数据给出的树单独删去每条边后,分裂出的两个子树的重心编号和之和。
样例
输入
2 5 1 2 2 3 2 4 3 5 7 1 2 1 3 1 4 3 5 3 6 6 7
输出
32 56
提示
【样例 1 解释】
对于第一组数据:
删去边 (1,2),1 号点所在子树重心编号为 {1},2 号点所在子树重心编号为 {2,3}。
删去边 (2,3),2 号点所在子树重心编号为 {2},3 号点所在子树重心编号为 {3,5}。
删去边 (2,4),2 号点所在子树重心编号为 {2,3},4 号点所在子树重心编号为 {4}。
删去边 (3,5),3 号点所在子树重心编号为 {2},5 号点所在子树重心编号为 {5}。
因此答案为 1 + 2 + 3 + 2 + 3 + 5 + 2 + 3 + 4 + 2 + 5 = 32。
【数据范围】
测试点编号 | n = | 特殊性质 |
---|---|---|
1 \sim 2 | 7 | 无 |
3 \sim 5 | 199 | 无 |
6 \sim 8 | 1999 | 无 |
9 \sim 11 | 49991 | A |
12 \sim 15 | 262143 | B |
16 | 99995 | 无 |
17 \sim 18 | 199995 | 无 |
19 \sim 20 | 299995 | 无 |
表中特殊性质一栏,两个变量的含义为存在一个 1 \sim n 的排列 p_i (1 \leq i \leq n),使得:
- A:树的形态是一条链。即 \forall 1 \leq i \lt n,存在一条边 (p_i, p_{i + 1})。
- B:树的形态是一个完美二叉树。即 \forall 1 \leq i \leq \frac{n-1}{2} ,存在两条边 (p_i, p_{2i}) 与 (p_i, p_{2i+1})。
对于所有测试点:1 \leq T \leq 5 , 1 \leq u_i,v_i \leq n。保证给出的图是一个树。